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Quantum mechanical basis for Mulliken population
analysis
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Using an approach alternative to that of Mayer, this paper shows that a Hermitian
operator can be found, such that, in a molecule atomic populations can be obtained
as its expectation values. In this way, atomic charges can be computed within a quan-
tum mechanical correct definition. When working within the LCAO MO framework, it
is found that Mulliken populations appear as the appropriate expectation values of the
charge operator.
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1. Introduction

An often used concept in chemical reasoning about molecular behavior and
reactivity, are atomic charges and charge transfer. As a result, atomic charges
continue to play an important role in quantum chemistry and much research
continues to being done to refine the concept of an atomic charge. Since the
description of atomic populations by Mulliken [1–4], many alternative definitions
of atomic charges and populations have been presented as a natural consequence
of the previous statements [5].

One of the leitmotifs of the various charge definitions can be expressed in
just a few words. First of all, the question can be raised whether it is justified
to consider atoms within a molecule [6]. Atomic charges, according to the usual
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quantum chemical lore, are arbitrarily defined throughout, even if they involve
judicious and well founded partitions or manipulations of the quantum mechan-
ical density function. This is so because atomic charges or populations are not
quantum mechanical observables and thus, such molecular descriptors can result
from some reasonable, albeit arbitrary procedure. Although electron density itself
is an observable, the problem arises from the fact that there is no operator which
describes how to distinguish atoms in a molecule. Since an atomic charge is
not an observable in quantum mechanical sense, meaning that atomic charges
are not expressed as expectation values of some Hermitian operator attached to
some experimental value; it could be argued that discussions about such chem-
ical molecular descriptors are irrelevant from the quantum mechanics point of
view.

Despite this fundamental problem, the published literature shows a tremen-
dously large number of studies where atomic charges were found to be very
instructive in interpreting different aspects of molecular behavior as such. This
situation warrants any effort to reconcile theoretical quantum mechanics and
applied quantum chemistry. Such a task requires finding a proper reasoning to
solidly establish a background for such a large number of valuable chemical
researches. Put shortly, the aim of the paper is to discover a Hermitian opera-
tor that for each atom A in a molecule gives its atomic population by means of
an expectation value expression:

〈�A[ρ]〉 =
∫

�A [ρ(r)] dr = NA. (1)

As will be shown below, using an approach alternative to that of Mayer
[5], application of such a Hermitian operator in the LCAO MO framework gives
results equal to Mulliken’s atomic populations. Accordingly, it will be shown that
Mulliken’s charges are expectation values of a Hermitian operator.

2. First-order density function in a LCAO MO context

Mulliken atomic populations are mainly based on first-order density func-
tions within a LCAO MO theory approach [7], a widespread technique that Mul-
liken himself described for the first time. Because of this, the development of the
following reasoning will be based on this well-known theoretical setup.

First a summary of the first-order density function structure will be
given, employing a convenient notation, which will be also used thereaf-
ter. In LCAO MO theory, a molecular orbital (MO) is a monoelectronic
function, |i〉, expressed as a linear combination of monoelectronic functions:
M = {

χµ (r) ≡ |µ〉} considered as a basis set. Usually these basis functions are
centered on the positions of the nuclei of the atoms composing the molecule,
although in principle they can be centered anywhere in space. The MOs can then
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be written as:

|i〉 =
∑

µ

cµi |µ〉 , (2)

where the set of linear coefficients
{
cµi

}
can be collected into a column vector

in this way

|ci〉 = {
cµi

}
. (3)

Equation (2) can be cast in terms of the column vector (3) and a row vector col-
lecting all the basis functions

〈M| = {|µ〉} = (. . . ; |µ〉 ; . . .) , (4)

so the MO expression becomes

|i 〉 = 〈M |ci 〉. (5)

In such a notation, the first-order density function can be simply expressed as a
bilinear form

ρ(r) =
∑

µ

∑
ν

Pµν |µ〉〈ν| , (6)

where the charge and bond order matrix: P = {Pµν} is defined in terms of the
MO coefficients (3) as:

P =
∑

i

ωi |ci〉 〈ci | → ∀µ, ν : Pµν =
∑

i

ωicµicνi, (7)

where the parameters {ωi} are the MO occupation numbers. This definition
becomes the same as to write the first-order density function in terms of the
MO as:

ρ(r) =
∑

i

ωi |i〉〈i| . (8)

Finally, it must be stated that the first-order density function integrates to the
total number of electrons in the molecule, NM; in the following way:

〈ρ〉 =
∫

D

ρ(r)dr =
∑

µ

∑
ν

Pµν

∫
D

|µ〉〈ν|dr =
∑

µ

∑
ν

PµνSµν = NM, (9)

where D is the appropriate integration domain, which in the usual practice refers
to entire space, and the involved integrals over the basis set are the overlap inte-
grals, the scalar products over the basis functions:∫

D

|µ〉〈ν|dr = Sνµ = 〈ν |µ〉, (10)
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which in case of real functions produce a symmetric positive definite matrix:

S = {
Sνµ

} = ST = {
Sµν

}
. (11)

Knowing this, equation (9) can be simplified to∑
µ

∑
ν

PµνSµν =
∑

i

ωi

∑
µ

∑
ν

cµicνiSµν =
∑

i

ωi〈ci |S|ci〉 (12)

and, owing to the fact that the MO coefficients can be considered without loss
of generality as an orthonormalized set of vectors, one can write:

∀i, j : 〈ci |S|cj 〉 = δij , (13)

so, equation (12) can finally be written as:

〈ρ〉 =
∑

i

ωi〈ci |S|ci〉 =
∑

i

ωi = NM. (14)

3. Mulliken atomic populations as a quantum mechanical expectation value

The elements of the basis set M are usually centered in the sites where the
atomic nuclei are in a given molecular structure. The basis function centers will
be noted by capital letters: A, B, . . . For example, such a convention can be
expressed in the present notation as:

µ ∈ A → |A; µ〉, (15)

meaning that the µth basis function is centered (or belongs) to atom or space
site A. We will refer to these centers as atomic centers and will call the popu-
lations attached to them atomic populations. Naturally, nothing opposes to the
use of non-atom centered basis functions, although their use is uncommon.

Keeping this in mind, the aim is now to find a Hermitian operator �A,
attached to center A, that, when applied to the density function (6), has as
expectation value the corresponding population NA; that is

〈�A [ρ]〉 =
∫

D

�A [ρ (r)] dr = NA, (16)

where D is an appropriate integration domain.
Atomic populations, defined in any way must sum up to the molecular total

number of electrons, NM , so they must fulfill∑
A

NA = NM, (17)
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and using this necessary property over atomic population definition (16), it is
found that

∑
A

〈�A [ρ]〉 =
〈∑

A

�A [ρ]

〉
= NM. (18)

However, the density function possesses the usual property to integrate to the
number of electrons too, as shown in the previous section, so one arrives to the
conclusion that 〈∑

A

�A [ρ]

〉
= NM = 〈ρ〉 →

∑
A

�A = I. (19)

This result suggests that atomic population operators can possess a projection
nature, which allows the derivation of elegant formulae for the calculation of
electron populations on atoms. Roby defined population analysis based on pro-
jector operators as projection-density population analysis [8,9]. There, use was
made of atomic orbitals instead of the non-orthonormal basis functions used,
and Gleason’s theorem [10] was used extensively to calculate electron populations
over unions of atoms. This is then used to calculate not only atomic electron
populations but also shared electron density between two atoms, three atoms, . . .
always based on the first-order electron density. The use of projection operators
in several formulations of population analysis was recently discussed by Clark
et al. [11].
Equation (19) entails that

�A [ρ] = ρA ∧
∑
A

ρA = ρ. (20)

This is the same as considering that population operators project the density
function into an atomic or center density function, attached to the associated
molecular structure.

Now, the natural way of choosing these projections, without recurring to
the search of the nature of the atomic operator set, is to write:

ρA =
∑
µ∈A

∑
B

∑
ν∈B

P AB
µν |A; µ〉 〈ν; B| , (21)

where the superscripts on the charge and bond order matrix elements show the
belonging of the subscripts to the corresponding basis set function centers.

Expression (21) of the atomic density, upon integration over some
appropriate domain D, provides the same expression which Mulliken originally
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employed in the definition of atomic population:

NA =
∫

D

ρA (r) dr =
∑
µ∈A

∑
B

∑
ν∈B

P AB
µν

∫
D

|A; µ〉 〈ν; B|dr

=
∑
µ∈A

∑
B

∑
ν∈B

P AB
µν SAB

µν , (22)

where in the overlap elements the same superscript notation has been employed,
as in the one used in the charge and bond order matrix elements, to stress the
centers of the involved basis functions.

This reasoning provides an intuitive background about the fact that
Mulliken atomic populations could be associated to the expectation values of
some Hermitian operator. Such an operator, in turn, can be considered taking
the form of a projector that, acting over the first-order density function, provides
the atomic density parts corresponding to some known molecular structure.

In this sense, such a result, if possible, will permit to confirm that Mulliken
atomic populations may be considered correctly defined from the quantum
mechanical point of view.

4. Quantum mechanically defined atomic population definition

Mulliken atomic population can be considered as the summation of AO
population contributions

{
NA

µ

}
, or

NA =
∑
µ∈A

NA
µ . (23)

And the basis set function populations are defined in turn by

NA
µ =

∑
B

∑
ν∈B

P AB
µν SAB

µν , (24)

being the result of integrating the basis function µ density fragment, easily
defined as

ρA
µ =

∑
B

∑
ν∈B

P AB
µν |A; µ〉 〈ν; B| , (25)

which in turn can be considered the projection of the first-order density upon an
operator �A

µ:

�A
µ [ρ] = ρA

µ . (26)

But this picture remains unsatisfactory, as the nature of the projection operators
remains undefined.
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In order to define unambiguously such an operator set, suppose that any
basis function |α〉 is chosen and the corresponding projector constructed

�α =
∑

λ

S
(−1)
λα |α〉 〈λ| , (27)

where S−1 =
{
S

(−1)
λα ≡ S

(−1)
αλ

}
are the elements of the symmetric inverse basis set

metric or overlap matrix. The above defined projector permits to write:

�α [|α〉] =
∑

λ

S
(−1)
λα |α〉〈λ| α =

∑
λ

S
(−1)
λα |α〉 Sλα =

(∑
λ

S
(−1)
λα Sλα

)
|α〉 = |α〉.

(28)

It is interesting to compare this approach to that of Roby et al. as equation (27)
allows a straightforward extension to introduce an atomic projector by summa-
tion over all basis functions centered on that atom

PA =
∑
α∈A

�α =
∑
α∈A

∑
λ

S
(−1)
λα |α〉〈λ|, (29)

Note that the summation in basis functions λ runs over all basis functions, irre-
spective of where they are centered. This is an important difference with respect
to Roby’s atomic projector:

PA =
∑
α∈A

|α〉〈α|, (30)

where α are the orthonormal AO’s centered on atom A. Clearly one cannot sup-
pose orthogonality with respect to the atomic orbitals of other atoms in the
given molecule. Equation (30) effectively means that in Roby’s formula the other
basis functions are not considered in the atomic projector. This also means that
when Roby’s projectors are extended to unions of atoms, for every union of
atoms a new overlap matrix inverse needs to be calculated [8].

The projector �α can be used on the electron density such that

�α[ρ] =
∑
νµ

Pνµ

∑
λ

S
(−1)
λα |α〉〈λ|µ〉〈ν|

=
∑
νµ

Pνµ|α〉〈ν|
∑

λ

S
(−1)
λα Sλµ

=
∑

ν

Pνα|α〉〈ν|, (31)

and so the projectors possess the necessary property that∑
α

�α [ρ] = ρ. (32)
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The projectors can also be extended to higher order by means of a tensor
product

�
(2)
αβ = �α ⊗ �β. (33)

This allows the definition of multicenter electron occupation numbers when
using higher order electron densities. Defining the action of the operator �

(2)
αβ as

�
(2)
αβ =

∑
µ

∑
ν

Pµν�
(2)
αβ [|µ〉〈ν|]

=
∑

µ

∑
ν

Pµν�α [|µ〉〈ν|] �β (34)

one finds that the action of the projector (33) over the density function is easily
described in terms of the corresponding overlap integrals between basis functions

�
(2)
αβ [ρ] =

∑
µ

∑
ν

Pµν

∑
λ

S
(−1)
λα |α〉〈λ| [|µ〉〈ν|]

∑
κ

S
(−1)
κβ |κ〉〈β|

=
∑

µ

∑
ν

Pµν

∑
λ

∑
κ

S
(−1)
λα S

(−1)
κβ |α〉〈λ|µ〉〈ν|κ〉〈β|

=
∑

µ

∑
ν

Pµν

(∑
λ

S
(−1)
λα Sλµ

)(∑
κ

S
(−1)
κβ Sνκ

)
|α〉〈β|

=
(∑

µ

∑
ν

Pµνδαµδνβ

)
|α〉β| = Pαβ |α〉〈β|. (35)

Equation (35) shows how the projector (33) retrieves the |α〉 〈β| component of
the density function; the coefficient at the left can be interpreted as the corre-
sponding charge and bond order matrix element.

Again the necessary condition for the projector, or a tensor product of such
projectors is fulfilled, that is:∑

α

∑
β

�
(2)
αβ [ρ] =

∑
α

∑
β

Pαβ |α〉〈β| = ρ. (36)

As a consequence, using definitions (27) and (33), the appropriate operator pro-
ducing as an expectation value Mulliken’s atomic population can be written as:

�A =
∑
α∈A

∑
B

∑
β∈B

�
(2)
αβ , (37)

as the former expression (20) is fulfilled by the Hermitian operator (37).
This proves that Mulliken orbital and atomic populations can be attached

to the expectation values of Hermitian projection operators. In consequence,
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Mulliken’s populations can be considered soundly defined from the quan-
tum mechanical point of view, even if they remain not observable molecular
properties.

Of course, the description of the adequate projection operators giving rise
to Mulliken’s populations does not alleviate the well-known problems associated
with Mulliken population analysis. These problems concern the relatively large
basis set dependence, the occurrence of inappropriate occupation numbers and
the issue of diffuse functions [12]. Many of these topics, however, pervade all
quantum chemistry application fields.
Finally, one should point out that the defined Hermitian operator (37), provid-
ing the atomic populations for a molecule within a LCAO MO context, can
be easily generalized to obtain bond orders, when adequately applied to sec-
ond order density functions. In the same way, its application to multiple bond
order definition is a matter of a natural extension of the procedure to higher
order density functions. Results associated to these issues will be provided in
forthcoming work.
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